If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2=625
We move all terms to the left:
v^2-(625)=0
a = 1; b = 0; c = -625;
Δ = b2-4ac
Δ = 02-4·1·(-625)
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-50}{2*1}=\frac{-50}{2} =-25 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+50}{2*1}=\frac{50}{2} =25 $
| 3.8c=475 | | 8(x+4)-4=4•1 | | 3x^2-5+x=6x+1 | | 2/5b=44 | | 8x+9+12x-5=180 | | x+x(2-2)=9÷x | | 7x+2+3x‐10=-28 | | 4.22/r=2 | | 4.5-1.5(6m+2)=6 | | 8(x+4)-4=4x1 | | 4x²-6=74 | | 8(2x-6)+4x=-112 | | 23x+-14=124 | | 1–2x+5=4x+6 | | 0.09=-9f | | 3w−–9=18 | | 36.3=-16.5e | | 7(p-3)=3 | | -3x+()=9 | | 5n+10=2(11+9n)+10(n-10) | | 6x-20+2x+35=90 | | 8(2x-6)+4x=112 | | -5x=-17.5 | | 6(2x^2-4)=5(x^2-8) | | 2x+7(3x-2)=124 | | -4.2d=-210 | | 6x-20+2x+36=180 | | 3(x+5)=3x+153x+15 | | 14=t+3.00*0.75 | | x-4/4=10 | | k^2+3=12 | | 3(x+5)= 3x+153x+15 |